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Abstract—Behavior cloning for training visuomotor policies
has become a popular framework in robotics. Yet, behavior
cloning heavily depends on the quality of human demonstrations
that tend to be both sup-optimal and time-consuming to collect.
We propose to use Graphs of Convex Sets (GCS) to automatically
create optimal demonstrations and use these demonstrations to
train a Diffusion Policy. We show that the action trajectories
executed by the Diffusion Policy are close to the optimal ones
that GCS would have run for the same initial conditions while
not requiring any human demonstrations. In doing so, we reveal
this novel paradigm’s potential to overcome the many downsides
of human-generated demonstrations.

I. INTRODUCTION

Our project is about using Graphs of Convex Sets (GCS) [6]
to automatically generate demonstrations for Diffusion Policy
[1]. In particular, we use GCS to create motion plans for a
point finger for pushing an object into a target state. We record
images of open loop execution of these motion plans and use
them for training a Diffusion Policy. This allow us to learn a
policy based on images rather than full-state feedback.

Diffusion Policy is a novel approach that works well and
robustly in a behavior cloning setting. However, it is currently
dependent on human demonstrations that are time-consuming
to collect and potentially sub-optimal. With our project, we
want to remove the need for human demonstrations by using
GCS to generate good demonstrations automatically. Using
full-state information, GCS has the potential to generate better
demonstrations than a human can. Diffusion Policy allows us
to use these demonstrations and convert them into an image-
based policy without access to the full state. Such an image-
based policy could then be executed on a real robot.

II. RELATED WORK

Denoising Diffusion Probabilistic Models (DDPMs), also
called diffusion models, are a class of generative models
[4]. The diffusion process starts with random noise, and the
diffusion model learns to gradually reduce the noise and
generate a high quality output. DDPMs have been applied
to a large variety of areas such as image synthesis, super-
resolution, and more recently, in robotics for representing
visuomotor control policies.

The recent work [1], introduces the idea of Diffusion
Policies which generate action sequences via a “conditional
denoising diffusion process on robot action space.” In their
experiments doing behavior cloning from human demonstra-
tions, they find that diffusion policies are able to express

multimodal action distributions, handle a high-dimensional
output space, and are stable to train. These advantages help
the authors achieve state-of-the-art results on a large variety
of robotic manipulation benchmarks. In general, however, the
quality of policies trained via behavior cloning is heavily
dependent on the expert demonstrations, and human generated
demonstrations are not guaranteed to be optimal. Additionally,
collecting human generated demonstrations is time consuming.

In [5], the authors propose using graphs of convex sets [6]
to perform optimal motion planning around obstacles. This
work provides an alternative to the standard sampling-based
planners which are commonly used for motion planning in
complex configuration spaces and cluttered environments. By
representing free space as a graph of convex regions, the
authors are able to use the framework proposed in [6] for
finding shortest paths in graphs of convex sets by solving a
compact mixed-integer optimization. In this project we build
off of an extension of these works which uses the idea of
graphs of convex sets for optimal planning through contact [2]
to automatically generate optimal demonstrations for training
diffusion policies.

III. METHOD

A. Overview

In this project we focus on the task of a point finger pushing
an axis-aligned box on the ground from an initial position to
a goal location. Successfully achieving this goal requires the
point finger to plan and execute a trajectory which makes and
breaks contact. We start by formulating this task as a GCS
problem and generate optimal trajectories. These trajectories
are then used as expert demonstrations for training a diffusion
policy via behavior cloning.

B. Problem Formulation

We will apply these techniques to a planar pushing task with
an actuated spherical robot finger and an unactuated box. We
constrain the box to not rotate in order to maintain convexity
of the GCS problem. The state of our system is defined as

x =
[
bx by sx sy

]⊤
(1)

Control inputs u are absolute position commands for the
finger

u =

[
ux

uy

]
(2)



We will assume that our system is quasistatic, meaning the
velocities and accelerations of the system are 0 at the end
of each time step. This corresponds to having a high amount
of damping and is a reasonable assumption in the 2D planar
pushing setup where we restrict pushing velocities to be low
and there is a large amount of friction between the object and
table surface. As a result, the state of our system only consists
of positions.

C. System Architecture

Our simulator is composed of three modular parts, the
environment, the high level controller and the low level
controller. The environment consists of a MultibodyPlant with
a top down camera, unactuated box and sphere finger robot.
The GCS and Diffusion Policy controllers are instances of the
high level controller. They take in finger state and RGB image
data from the environment and calculate the desired position
of the finger. This desired finger position is passed to the low
level controller. The low level controller uses the StateInter-
polaterWithDiscreteDerivatives leaf system to transform the
position commands into desired positions and velocities and
then feeds the desired state into an InverseDynamicsController
with PID gains of 100, 1 and 10 respectively for error based
tracking of the desired position.

D. GCS for Planning Through Contact

We start by defining two “contact pairs” – the finger and
box, and the box and ground. Each contact pair has a set of
allowable “position modes” and “contact modes,” and in order
to achieve the goal of moving the box from an initial position
the contact pairs must be able to transition between the various
position modes and contact modes.

For the box and the ground the only allowed position mode
is the box being on top of the ground (i.e. the bottom of the
box cannot sink below the ground). For the finger-box contact
pair we manually decompose the free space around the box
into 12 different position modes as shown in Figure 1. The
position modes are defined according to the relative position
of the finger with respect to the box. In the diagram the green
finger is shown in the “bottom left” position mode. The narrow
transition regions on each side of the box enforce that a) the
finger only contacts the box in the center of each side so there
is no rotation and b) there is no contact between the finger
and the box as the finger moves around to different sides of
the box.

Within each position mode, there are six possible contact
modes which depend on the magnitude of the force between
the bodies that make up the contact pair: ”no contact”, ”stick-
ing” (the bodies are in contact but there is no relative motion),
”sliding left”, ”sliding right”, ”sliding up”, and ”sliding down”.

Position modes are defined using constraints on the relative
position of the finger with respect to the box (BxF ,ByF ). For

Fig. 1. Possible position modes for the finger-box contact pair.

example, for the ”left” position mode, we require the following
constraints to be true:

BxF <= − lb
2
− bt

ByF <=
lb
2

ByF >= − lb
2
,

(3)

where lb is the width of the box and bt is the transition buffer
that we want to stay away from the box. The constraints are
computed similarly for the 11 remaining position modes.

Contact modes are defined with constraints on the forces
acting at the contact point c between bodies. We call the
horizontal friction force acting at point c, (f c)x and the vertical
friction force (f c)y . The normal force acting at point c is called
nc. We call the relative velocity between the objects vrel, and
the friction coefficient µ. To define the ”no contact” mode we
have the following constraints:

nc = (f c)x = (f c)y = 0,

vrel = 0.
(4)

In the case of ”sticking” contact the constraints are:

nc ≥ 0,

|(f c)x| ≤ µnc,

|(f c)y| ≤ µnc,

vrel = 0.

(5)

And, for ”sliding right” we have the following constraints:

nc ≥ 0,

|(f c)x| ≥ µnc,

|(f c)y| ≤ µnc,

(vrel)x ≥ 0,

(vrel)y = 0.

(6)



Fig. 2. GCS graph for planning through contact for box pushing.

The remaining three ”sliding” modes are defined similarly,
with different friction and relative velocity constraints depend-
ing on the direction of motion.

The vertices for the GCS graph are a combination of
position mode and contact mode for each contact pair in
the environment. For example, the combination of the ”left”
position mode and the ”no contact” contact mode for the
finger-box contact pair represents one vertex in the graph. The
convex set corresponding to that vertex is the intersection of
the position mode and contact mode constraints. In our setup,
all of these sets are naturally convex. Edges exist between
vertices with adjacent position modes and contact modes. For
example, any vertex which contains the finger and box in the
left position mode is connected to all vertices where the finger
and box are in the left transition, top left, or bottom left
transition mode. Additionally, when constructing the graph
only physically feasible vertices and edges are added. For
example, while we technically allow the finger-box contact
pair to be “sticking” when they are in the “left” position
mode, this is not physically possible given the geometry of
the position modes. Thus, the corresponding convex set will be
empty and no vertices with this combination of position and
contact mode will be added. We also manually prune some
modes to limit the size of the GCS graph. For example, we
require that the box is always in contact with the ground so
we do not allow the box-ground pair to ever be in the no
contact mode. A small section of the full GCS graph is shown
in Figure 2.

Once the GCS graph is constructed we can use the same
method as [5] to solve the mixed integer optimization problem
for finding a shortest path from the source node to the target.
The output is a finger trajectory parameterized by Bezier
curves which moves the box from its initial position to the

Fig. 3. One of the images that we generate while executing our GCS plans.
We use these images to train the diffusion policy. The box that needs to be
pushed is shown in red, the actuated point finger in black, and the box’s goal
location in green. The numbers indicate the image size and are not part of
the image.

goal position.

E. Data Generation

Both the training and validation of the policy requires
generating a set of random initial conditions of the system.
To do this we define the bounds of the workspace and sample
the initial positions of the finger and box from a uniform
distribution within those bounds. We then use Drake’s collision
checker to determine whether the finger and box are in
collision by evaluating the contact results output port of the
MultibodyPlant and reject the sample if they are in collision.

To generate GCS demonstrations for the diffusion policy,
we generate 100 valid initial conditions, use GCS to plan
the optimal open-loop position trajectory and then execute the
trajectory in Drake. Every 1000 simulation time steps we log
the RGB image output of the camera positioned above the
workspace, the open-loop desired position command, and the
actual position of the finger. An example image is shown in
Fig. 3.

F. Behavior Cloning with Diffusion Policies

Like [1], we use Denoising Diffusion Probabilistic Models
(DDPMs) to represent a visuomotor policy for pushing the
box. In their most general form DDPMs starts with a sample
of random noise xk and performs K denoising steps, resulting
in a sequence of samples xk−1, . . . , x0, where x0 is noise-
free. The process of denoising is done by a trained de-noising
network ϵθ(x

k, k), which predicts noise given a sample and
iteration step.



Fig. 4. Images of the 100 initial conditions of the training dataset averaged.

In order to train the noise prediction network ϵθ, random
samples x0 are drawn from the data and a random iteration
number k is chosen. From this, a noisy sample xk is con-
structed by adding k iterations of random noise ϵk to x0. Then,
the following loss function is minimized

L = MSE(ϵk, ϵθ(x0 + ϵk, k)).

To use DDPMs to represent visuomotor policies, we use
the method proposed by [1] which makes two fundamental
changes to the standard DDPM. First, the output is modified
to represent a trajectory of robot actions. In our experiments
the model predicts a series of 16 actions and the first 8 are
executed before predicting a new action sequence. By doing
inference in this way we essentially execute the policy in a
closed-loop Model-Predictive-Control scheme.

Secondly, the de-noising process is conditioned on the
current observation Ot using FiLM conditioning [7]. In our
experiments the observations are top down images of the
environment which show the finger, box, and goal location,
in addition to the known finger position (proprioception). The
noise prediction network now predicts an action sequence A0

given the observation sequence Ot and the new loss function
is

L = MSE(ϵk, ϵθ(Ot, A0 + ϵk, k)).

During policy execution, the first m actions of the action
prediction horizon are executed before replanning.

Additionally, to represent the diffusion policy we use the
same CNN-based U-Net that is used in [1]. Similarly to [1] we
use a ResNet-18 [3] as the image encoder, replacing the global
average pooling with a spatial softmax pooling to maintain
spatial information.

In practice, we use an action prediction horizon A0 of 16,
an observation horizon Ot of one, and an action execution

horizon of eight. We found an observation horizon of one to
be sufficient due to our quasi-static setup and the top down,
unoccluded camera view. Our actions have dimension two
and represent the desired finger positions. We create a Drake
LeafSystem for our diffusion policy that takes in an image
observation, predicts an action sequence, and commands the
next action in the action cache until that action is reached. This
process is repeated once the action cache becomes empty. We
execute these high-level actions using the same low-level PID
controller as we used for executing our GCS plans. We train
our policy using 100 demonstrations that were generated as
described in section III-E. A schematic of the training pipeline
is shown in Fig. 5.

IV. RESULTS & DISCUSSION

A. Experiment Setup

We compare our GCS open-loop policy that consists of
planning with GCS and executing the plan in an open-loop
fashion with a diffusion policy trained on GCS demonstrations,
and the same diffusion policy but with three random force
disturbances per simulation. For the diffusion policy with
disturbances, we apply a random force to the box with a
probability of 0.5% at every timestep for a maximum of three
disturbances per simulation. For each disturbance, we pick at
random one of the four box faces and apply a force f on that
face. Fe sample the force magnitude at random, f ∈ [50, 300]
newtons, and apply it for five consequitive timesteps, where
each timestep has a duration of 0.01 seconds.

B. Evaluation Metrics

For evaluation, we generate 20 random initial conditions
from the same distribution as the inital conditions that were
used during training (see section III-E). We run each of our
three policies five times for each of these initial conditions.
For each of the 100 runs per policy, we log whether the policy
succeeded, the run time, the simulation time, and the planning
time.

We determine success based on the box’s final distance
from the goal position. Particularly, we consider a run to be
successful if it terminates with the box having an L2 distance
of less than 0.1 meters from the goal position. We consider it
to be a failure if the box is more than that distance from the
goal position after a simulation timeout of 500 seconds. The
simulation time refers to the real time required for executing
the final policy and consequently is an indicator of the policy’s
optimality.

The diffusion policy is an online feedback policy and hence
plans multiple times during execution. The GCS is an open-
loop policy that creates the entire plan at the beginning. We
define the run time as the time taken to generate the simulation.
This includes the diffusion policy planning time as the policy
plans during execution but excludes the GCS open-loop plan-
ing time as planning is performed before execution. We take
the planning time as the GCS planning time that is required
before the open-loop execution. The total time is the sum of
both run and plan time, representing the total time taken to



Fig. 5. Pipeline for training diffusion policies.

generate a policy. We only report timings for the successful
runs as the unsuccessful runs end after the 500s timeout and
hence do not carry informative timing information.

All results were produced with on a Dell Precision 7560
laptop with an A5000 GPU and run one at a time without
use of the laptop by other applications. All computations
were performed on the CPU apart from the diffusion policy
action trajectory predictions that were performed on the GPU.
Performing the trajectory predictions on the GPU lead to a
five times speedup compared to performing them on the CPU.

C. Experimental Results

We report the success rate and simulation time results in
Table I. Notice that the disturbances do not significantly affect
the policy’s success rate, demonstrating robustness to such
disturbances. The GCS open-loop policy has access to the true
state of the box and consequently achieves success 100% of
the time. The diffusion policy only takes in visual information
and as a result achieves a lower success rate. Most diffusion
policy failure cases are caused by initial scene states that lie
outside of the training distribution. Table II shows the average
success rate for each of the 20 initial conditions. It can be
noticed that increasing the success threshold L2 distance from
0.1m to 0.2 leads to an increase in success rate for most of the
initial conditions. Such an increase also leads to the overall
success rate increasing to 0.775 for both the diffusion policy
and diffusion policy with disturbances. The initial conditions
are additionally visualized with their success rate in Fig. 6.
There are four initial conditions that achieve a zero percent
success rate, as highlighted in bold in Table II and shown in
dark in Fig. 6. By comparing the location of these four initial
conditions, as shown in Fig. 6, with the initial box positions
in the training data, as shown in Fig. 4, it can be observed that
they lie outside the training distribution. Two of the positions
are at the top right corner and the other two positions at the
bottom left corner of the box position state space. The training
data contains none or few initial conditions in these state
space regions. Consequently, these four positions represent
an expected failure case as behavior cloning is known to not

generalize well outside of the training distribution. Looking at
the average success simulation times, it can be noticed that the
diffusion policy requires longer to reach the goal than the GCS
open-loop policy. This is expected as GCS finds optimal paths
and is therefore able to reach the goal in the shortest amount
of time possible. The diffusion policy has no such guarantees.

Fig. 6. Initial box positions in the validation dataset colored by success rate
(0.2m success threshold).

The average run time, planning time, and total time for
successful executions are shown in Table III. It can be seen that
due to GCS’s long planning time, the diffusion policy is able
to compute a plan to the goal quicker than GCS. However,
as discussed above, the resulting diffusion policy still takes
longer to reach the goal than GCS.

V. CONCLUSION & FUTURE WORK

In this project, we explored using GCS to automatically
create optimal demonstrations for Diffusion Policy. We found
that the action trajectories executed by the diffusion policy
are close to the ones that GCS would have executed for
the same initial scene state. Moreover, we show that our
Diffusion Policy can achieve a high success rate on a planar



Fig. 7. The trajectories executed by the GCS open-loop policy compared to the ones executed by the Diffusion Policy. The GCS trajectory is shown with a
big line and the Diffusion Policy one with a thin line. The trajectories get brighter with simulation time. Each image represents a different initial condition
in the evaluation set. Notice that for the first two initial conditions, the Diffusion Policy trajectory is basically identical to the GCS one. For the third initial
condition, the Diffusion Policy trajectory is slightly less optimal than the GCS one (curved vs straight line at the beginning).

GCS Open Loop Diffusion Policy Diffusion Policy (Disturbances)
Mean Success Rate 1.00 0.67 0.65
Mean Success Simulation Time (s) 111.97 259.36 259.58

TABLE I
MEAN SUCCESS RATE AND SIMULATION TIME OF THE GCS OPEN-LOOP POLICY, A DIFFUSION POLICY TRAINED ON GCS DEMONSTRATIONS, AND THE

SAME DIFFUSION POLICY BUT WITH THREE RANDOM FORCE DISTURBANCES PER SIMULATION.

Initial Condition 0.1m 0.2m 0.1m (Disturbances) 0.2m (Disturbances)
0 1.00 1.00 1.00 1.00
1 1.00 1.00 1.00 1.00
2 1.00 1.00 0.60 1.00
3 1.00 1.00 1.00 1.00
4 0.60 1.00 0.60 1.00
5 1.00 1.00 0.60 1.00
6 1.00 1.00 1.00 1.00
7 0.00 0.00 0.00 0.00
8 0.00 0.00 0.00 0.00
9 0.00 1.00 1.00 1.00

10 0.80 1.00 1.00 1.00
11 1.00 1.00 1.00 1.00
12 0.60 1.00 1.00 0.60
13 0.00 0.00 0.00 0.00
14 1.00 0.60 1.00 1.00
15 1.00 1.00 1.00 1.00
16 0.00 0.00 0.00 0.00
17 1.00 1.00 1.00 1.00
18 0.60 1.00 1.00 1.00
19 0.80 1.00 0.60 1.00

TABLE II
SUCCESS RATES FOR THE DIFFUSION POLICY AND DIFFUSION POLICY WITH DISTURBANCES. 0.1M INDICATES THE SUCCESS RATE WHEN SUCCESS IS

CONSIDERED AS THE BOX BEING LESS THAN 0.1M FROM THE TARGET AND SIMILARLY FOR 0.2M. THE INITIAL CONDITIONS THAT HAVE A ZERO
PERCENT SUCCESS RATE ARE HIGHLIGHTED IN BOLD.

GCS Open Loop Diffusion Policy Diffusion Policy (Disturbances)
Mean Success Run Time (s) 5.50 63.28 80.91
Mean Plan Time (s) 126.07 0.00 0.00
Mean Total Success Time (s) 131.57 63.28 80.91

TABLE III
MEAN RUN TIME, PLAN TIME, AND TOTAL TIME FOR THE GCS OPEN-LOOP POLICY, A DIFFUSION POLICY TRAINED ON GCS DEMONSTRATIONS, AND

THE SAME DIFFUSION POLICY BUT WITH THREE RANDOM FORCE DISTURBANCES PER SIMULATION. THE MEANING OF THESE METRICS IS EXPLAINED IN
SECTION IV-B.



pushing task from visual observations without the need for
human demonstrations. We see great potential in this paradigm
as human demonstrations are both sub-optimal and time-
consuming to generate.

An obvious next step would be to extend our system to
one that allows rotations rather than being axis-aligned. This
would then enable planning planar pushing tasks for arbitrary
objects such as the T from Diffusion Policy. Doing so should
now be possible due to breakthroughs in this are that were
made by Bernhard Graesdal while we were working on our
project.

We observed that our Diffusion Policy struggles with initial
conditions that lie outside the training distribution as is the
norm for behavior cloning approaches. A fruitful direction
of future work would be to explore a system in which GCS
is used to automatically create new demonstrations for such
failure modes. This is possible, as GCS can be used to create
demonstrations from arbitrary initial positions, something that
can be hard to achieve with human demonstrations. Such a
system could then alternate between creating demonstrations
and finetuning the diffusion policy with the new demonstra-
tions, creating a continuous learning system.

VI. CONTRIBUTIONS

We worked jointly on the initial GCS planning through
contact formulation. After which Ria took the lead on im-
plementing the additional transition modes such that the finger
maintains a buffer around the edge of the box, Shao focused on
the infrastructure required to generate training data with GCS
and Nicholas worked on training and executing the Diffusion
Policy.
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