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Abstract—Motion planners for contact-rich manipulation are
limited by current implementations of contact samplers. In
this report we present initial progress towards developing a
generalizable and performant goal-conditioned contact sampler.
We explore the use of randomized smoothing and analytic
smoothing to overcome the flatness of the cost landscape under
exact dynamics, thereby enabling the use of gradient based
methods to improve sampled configurations. We also show the
effects of different smoothing and gradient descent parameters
on the cost landscape and gradient descent trajectories on simple
planar pushing examples.

I. INTRODUCTION

Contact-rich manipulation is a class of robotic tasks that
involve close and complex interaction between the robot and
its environment [1]. This is an important problem in robotics
because it can unlock the ability of robots to efficiently per-
form dexterous physical tasks such as wiping [2], molding [3],
[4] and reorienting [5], which humans perform instinctively
but thus far has remained challenging for robots. Planning
for such tasks is challenging because of the discontinuous,
non-smooth and high-dimensional contact dynamics. Recent
work has identified contact sampling (figuring out where and
how a robot should make contact with an object in order
to achieve a goal configuration) as an important bottleneck
in the effectiveness of model-based methods for contact-rich
manipulation [4], [6].

In this report we present initial work on developing a gen-
eralizable and performant goal-conditioned contact sampler.

In [6], Pang et al. demonstrate the potential of sam-
pling based planners for contact rich manipulation. They use
smoothing of contact dynamics to avoid explicit enumeration
of contact modes and highlight the importance of the contact
sampling step in increasing state space coverage of the RRT.
However, they use a naive implementations of the contact
sampler. For the planar pusher and planar hand tasks they
randomly sample a single contact configuration on the object’s
surface. For the more complex manipulator of the Allegro
hand, they use Eigen grasps [7] to pick a random direction
in the hand configuration space and then simulate closing
the hand along that direction until contact is established.
These methods are used to find any contact configuration
rather than a good contact configuration conditioned on the
goal. Another shortcoming of their implementation is that the

contact sampler needs to be hand designed for the particular
manipulator-object pair.

In the context of deformable object manipulation, work by
Li et al. [4] demonstrates how contact sampling can be used
together with trajectory optimization to complete multi-stage
Plasticine shaping tasks which require making and breaking
contact with the Plasticine. They first use optimal transport
to define a heuristic for which object particles have to move
the greatest distance to achieve the goal configuration of
the object. They then manually specify how the end-effector
should be placed in relation to those particles. However, since
their heuristic is object-centric, it does not easily inform how
a complex end-effector such as a dexterous hand should make
contact with the object.

In our work, we hope to develop a contact sampler that is
highly general, working across manipulators (from simple to
complex) and objects, whether rigid or deformable.

Unlike previous work on grasp synthesis [8], [9], we do
not have the explicit goal of grasp stability. Additionally, we
do not restrict the contact points to be at the fingertips of
the manipulator, allowing for contact between the object and
manipulator to be made anywhere along the surface of the
manipulator.

Our approach is also different from functional grasp syn-
thesis [10], [11], where the aim is to grasp the object or tool
in a way such that it can be used to perform a particular
function, for example, grasping a mug such that it can be
placed somewhere or such that its contents can be poured
into another container [10], [11]. Functional grasp synthesis
encodes higher level constraints on how to use an object
or tool for a particular function. Our problem is more low-
level and involves manipulating the object itself into a desired
shape or pose. Additionally, these works do not deal with
non-prehensile manipulation, which is an important mode of
manipulation for achieving extrinsic dexterity.

II. PROBLEM FORMULATION

Given a goal state xg and current state x of the object,
we want to find the robot configuration q, that would, in one
subsequent command u, minimize the object’s distance to the
goal,

min
q∈A(x)

d(xg, f(x, q, u)). (1)



This is a short horizon version of the longer horizon
question: Given a goal state xg and current state x of the
object, how should you position the robot q to best reach xg ,
through subsequent commands u.

Note that embedded within this formulation is the question
of what singular or sequence of u’s should be taken in order to
achieve the minimum distance. In Sec. IV, where we explore
randomized smoothing of the cost landscape, we minimize the
expected cost over Gaussian samples of one step u’s. In Sec.
V where we explore analytic smoothing of contact dynamics,
we minimize the cost under the nominal position command
ū = q̄ of the current position of the robot (no movement).

We denote the full state of the system s as being composed
of the unactuated object states x and actuated robot states q,

s =

[
x
q

]
. (2)

In this report we will consider a discrete-time system with
quasistatic dynamics where the control input is an absolute
position command u.

s′ = f(x, q, u) (3)

The ideas discussed should extend to fully dynamic settings,
but we will leave those modifications to future work.

III. SOLUTION SKETCH

Alg. 1 describes the outline of the contact sampling method
we propose. In this report we only discuss two formulations
for determining the gradient at a sample point, but we have
made the code base modular to facilitate experimentation
with different gradient descent algorithms, cost functions and
dynamical systems as well.

Algorithm 1: Contact Sampling
1 Input: Initial object state x, goal object state xg;
2 Output: Best robot states {qn}N−1

n=0 ;
3 {qinitm}M−1

m=0 ← Rejection sample initial admissible
positions from uniform distribution over workspace;
{qfinalm}M−1

m=0 = GradientDescent({qinitm}M−1
m=0) ;

4 {qn}N−1
n=0 ← Select N lowest cost {qfinalm}M−1

m=0 ;
5 return {qn}N−1

n=0

The key challenge in applying such a gradient based method
to find the solution to (1) is that the gradients are zero in the
absence of contact, making it a difficult landscape to optimize
over.

IV. RANDOMIZED SMOOTHING OF THE COST

The first approach we will use to address the flat cost
landscape is randomized smoothing of the cost. Instead of
minimizing the exact cost (1), we minimize the expectation
of the cost at a given point when we inject a Gaussian
perturbation in position command u,

min
q∈A(x)

Ew [d(xg, f(x, q, u = q + w))] w ∼ N (0, σ2).

(4)

A. Cost Landscape Computation

To generate a visualization of this smoothed cost landscape,
we first discretize the state space into a grid. At each point
on the grid we take samples of actions which are normally
distributed and centered on the position of the grid point. We
calculate the cost based on the state of the object after rolling
out exact dynamics for each action sample. We then take the
mean of the rolled out costs, corresponding to the zeroth order
gradient estimation described in Sec. IV-B.

B. Gradient Computation

To use zeroth-order methods to calculate the gradient, we
choose a surrogate objective to (4),

min
q

Ev,w [d(xg, f(x, q + v, q + v + w))] , (5)

where w ∼ N (0, σ2
wI) and v ∼ N (0, σ2

vI).
Using Stein’s lemma, the gradient of (5) can be written as

∇qEv,w [d(xg, f(x, q + v, q + v + w))]

= Ev,w

[
v

σ2
v

[d(f(x, q + v, q + v + w), xg)− µ∗]

]
,

(6)

where µ∗ = Ev,w [d(xg, f(x, q + v, q + v + w))] which has
the unbiased estimator of the sample mean,

µρ(q) =
1

N

N∑
i=1

[d(f(x, q + vi, q + vi + wi), xg)] . (7)

Thus, the natural estimator of the gradient (6) is

1

σ2
v

1

N

N∑
i=1

vi [d(f(x, q + vi, q + vi + wi), xg)− µρ(q)] . (8)

C. Results and Discussion

1) Effect of Action Standard Deviation on Cost Landscape:
A larger action standard deviation, σu, results in greater
smoothing of the cost landscape which can also be interpreted
as allowing a sample point to pull in information from further
away at the cost of introducing bias.

Fig. 1 (right) depicts a situation where σu is high relative to
the magnitude of the action required to push the object into the
goal configuration. The object is very close to the goal, thus
for σu = 0.1 all positions that make contact with the object are
higher cost than positions further away from the object. This
is because random actions taken from each of the positions
in contact would on average push the box further away from
the goal. By reducing σu to 0.01, what was previously a hill
becomes a very slight valley along the left face of the object
(Fig. 2 (left)). Reducing σu also has the effect of making the
cost landscape flatter in general as can be seen from Fig. 2
and 3.



Figure 1: Effect of distance between initial and goal object po-
sitions on cost landscapes with randomized smoothing where
action standard deviation σu = 0.1

Figure 2: Effect of action standard deviation σu on cost
landscapes with randomized smoothing for xg = [0.3, 0, 0].

2) Effect of Aggregation Functions on Cost Landscape: In
Fig. 4, we see that taking the Min of the costs of the rolled
out action samples creates a landscape that is flat everywhere
that the action samples were not able to decrease the cost,
a has a sinkhole where the cost was improved by the action
samples with a global minimum at the center of the left face
of the box. To do gradient descent on this cost landscape the
gradient computation described in Sec. IV-B would need to
be reformulated. It may be worth exploring as it seems that
the region of attraction to the global minimum is larger for
Min as compared to Mean. Additionally, the gradient descent
algorithm could be sped up by discarding samples that do not
move after a few iterations. It would not make sense to do
gradient descent on the max cost landscape (right), but it was
included just for comparison to build intuition.

Figure 3: Effect of action standard deviation σu on cost
landscapes with randomized smoothing for xg = [2, 0, 0].

Figure 4: Effect of different aggregation functions on cost
landscapes with randomized smoothing for xg = [2, 0, 0].

Figure 5: Effect of number of incremental rollout steps
on cost landscapes with randomized smoothing for xg =
[2, 0, 0], σu = 0.5. For example, for steps = 10, the absolute
position command would be discretized into and rolled out
over 10 steps, such that the difference between the robot’s
current position and the commanded position at each interme-
diate step would be smaller.

3) Non-physical Effects of Convex Relaxation of Contact
Dynamics on Cost Landscape: Anitescu’s convex relaxation of
contact dynamics introduces non-physical effects [12] which
are magnified when taking a larger action in a single step as
can be seen in in Fig. 5. The tangential velocity between the
robot and object creates phantom forces from a distance. We
hypothesize that this greater coupling between the position of
the robot and the object results in the increased smoothness
we see when rolling out the dynamics over 1 step instead of
10 steps.

4) Performance of contact sampling: Fig. 6 shows that per-
forming gradient descent with the zeroth order batch gradient
was able to shift the initially sampled points to lower cost
positions. A significant number of points “run away” from the
object (in particular, points initially along the left, bottom and
lower part of the right face of the object). There are three
minima at the top left, top right and bottom right of the box
that we see some points successfully make their way to, and
other points head towards.

5) Effect of Perturbation Standard Deviation on Gradient
Descent Trajectories: Comparing Fig. 8 and 7 we see that if
σu is large relative to σq , the trajectories of the points are
more jagged and larger steps are taken (Fig. 8 (right) and Fig.
7 (left)). If σu is small relative to σq , the trajectories of the



Figure 6: Results of gradient descent with zeroth order batch gradient on cost with randomized smoothing for xg =
[−1.5,−1.5, 1], σq = 0.1, σu = 0.1, h = 0.01. Left: visualization of gradient descent iterations with initial iteration in
red, and final iteration in green; middle: histogram of initial and final costs; right: trajectories of cost through gradient descent
iterations with the 3 trajectories with the lowest final cost in color and the rest of the trajectories in grey.

Figure 7: Effect of action standard deviation σu on gradient
descent with zeroth order batch gradient on cost with random-
ized smoothing for xg = [2, 0, 0], σq = 0.1, h = 0.01.

Figure 8: Effect of position standard deviation σq on gradient
descent with zeroth order batch gradient on cost with random-
ized smoothing for xg = [2, 0, 0], σu = 0.3, h = 0.01.

points are straighter and smaller steps are taken (Fig. 8 (left)
and Fig. 7 (right)).

In Fig. 8 (right), we see that no points end up close to the
surface of the object, even on the left face of the object. We
see that when σq is too large, it has the effect of creating a
buffer zone around the object which is undesirable for our use
case.

To explain why points in Fig. 7 (left) end up spread out
along the left face of the object while points in 7 (middle)
and (right) end up in the center of the left face, we note the
correspondence between the gradient descent results in Fig.
7 and the cost landscape of Fig. 2. The gradient towards the
center of the left face is steeper for larger σu.

Figure 9: Effect of position standard deviation σq on gradient
descent with zeroth order batch gradient on cost with random-
ized smoothing for xg = [2, 0, 0], σu = 0.3, h = 0.05.

6) Effect of Step Size on Gradient Descent Trajectories:
Contrasting Fig. 8 (h = 0.01) and 9 (h = 0.05), we see the
importance of tuning the step size h based on the σ’s used.
Using a large step size coupled with large σ as shown in Fig.
9 (right), results in chaotic trajectories that do not converge
near the surface of the object.

V. ANALYTIC SMOOTHING OF CONTACT DYNAMICS

Instead of doing randomized smoothing the cost directly
as we did in Sec. IV, we can instead choose to analytically
smooth the dynamics of the system, as implemented in [6], and
evaluate the same cost. This is because analytic smoothing of
the cost is significantly harder than the dynamics which is
more structured.

A. Cost Landscape Computation

To generate a visualization of this smoothed cost landscape,
we similarly first discretize the state space into a grid. How-
ever, different from the randomized smoothing cost landscape
described in Sec. IV-A, at each point on the grid we do not
take samples of actions. Instead, we calculate the cost based on
the state of the object after rolling out the smoothed dynamics
for the nominal action d(xg, f

ρ
x (x, q, u = q)).



B. Gradient Computation

We first introduce the notation for the analytically smoothed
dynamics of the object as

x′ = fρ
x (x, q, u), (9)

where the subscript x indicates that we are extracting only
the next state of the object instead of the full state of the
system 2, and the superscript ρ indicates that the dynamics
are smoothed.

We denote the absolute position command u as a function
of the current robot position q and a relative position command
ur

u(q, ur) := q + ur. (10)

We then define an alternate dynamics function that takes the
relative command as input instead of the absolute command,

fρr
x (x, q, ur) = fρ

x (x, q, u(q, ur)). (11)

In order to perform gradient descent we’d like to calculate
the gradient of the cost with respect to the position of the
robot q,

∇qd(f
ρr
x (x, q, ur), xg)

=
∂

∂q
x′⊤

∣∣∣∣
x′=fρr

x (x̄,q̄,ūr)

∂

∂x′ d(xg, x
′)

∣∣∣∣
x′=fρr

x (x̄,q̄,ūr)

,
(12)

where we take ur = 0 or equivalently u = q.
The first term of (12) can be found using the chain rule for

total derivatives,

∂

∂q
x′ =

∂

∂q
fρr
x (x, q, ur)

∣∣∣∣
x̄,q̄,ūr

=
∂

∂q
fρ
x (x, q, u(q, ur))

∣∣∣∣
x̄,q̄,ū=ūr+q̄

=
∂

∂q
fρ
x (x, q, u(q, ur))

∣∣∣∣
x̄,q̄,ū=ūr+q̄

+
∂

∂u
fρ
x (x, q, u(q, ur))

∣∣∣∣
x̄,q̄,ū=ūr+q̄

∂u

∂q

= Axq(x̄, q̄, ūr + q̄) +Bx(x̄, q̄, ūr + q̄),

(13)

where we note that ∂u/∂q = I for our choice of ūr = 0.
And if we are considering the specific cost function

d(xg, x
′) of weighted l2-norm cost,

d(xg, x
′) = (xg − x)⊤Q(xg − x′), (14)

the gradient of (14) with respect to x′ is

∂

∂x′ d(xg, x
′) = −2Q(xg − x′). (15)

Substituting (13) and (13) into (12) we get

∇qd(f
ρr
x (x, q, ur), xg)

= −2[Axq(x̄, q̄, ūr + q̄) +Bx(q̄, q̄, ūr + q̄)]Q(xg − x′),
(16)

which is the final form of the equation we use to calculate the
gradient.

Figure 10: Effect of log barrier weight κ on cost land-
scapes with analytically smoothed contact dynamics for xg =
[0.3, 0, 0].

Figure 11: Effect of log barrier weight κ on cost landscapes
with analytically smoothed contact dynamics for xg = [2, 0, 0].

C. Results and Discussion

1) Effect of Log Barrier Weight on Cost Landscape and
Gradient Descent Trajectories: Similar to the effect of in-
creasing σ in the context of zeroth order gradient estimation,
reducing the log barrier weight κ, which corresponds to an
increased the amount of smoothing, also makes the cost
landscape more contoured, increasing the height of the peaks
and depths of the valleys (Fig. 10-12).

Having κ be too small relative to the distance between the
object’s current position and goal position, as shown in Fig. 16
(right), results in final positions of the samples that are away
from the surface of the object. The large force at a distance
means that if the robot were to be closer to the surface it
would exert too strong a force on the object and would end
up increasing the cost. This is similar to what we see in Fig.
1 where the goal position of the object being too close to the
initial position results in the cost of all points along the surface
of the object being higher cost than the cost further away.

VI. COMPARISON BETWEEN RANDOMIZED SMOOTHING
OF THE COST AND ANALYTIC SMOOTHING OF THE

CONTACT DYNAMICS

We can see that analytic smoothing of contact dynamics
leads to a smoother cost landscape than randomized smoothing
of the cost directly. This translates to smoother trajectories of
the sampled points during gradient descent as seen in Fig.
13-16 as compared to Fig. 6-9.

In the examples explored in this initial work, optimizing
over the cost landscape created by the analytically smoothed
contact dynamics seems to result in a greater ability for



Figure 12: Effect of log barrier weight κ on cost land-
scapes with analytically smoothed contact dynamics for xg =
[−1.5,−1.5, 1].

sampled points to travel towards at least locally optimal
positions (Fig. 13), as opposed to “running away” from the
object (Fig. 6).

We suspect that these differences arise from smoothing of
the cost landscape vs smoothing of the dynamics, as opposed
to randomized smoothing vs analytic smoothing or zeroth
order gradient estimation vs first order gradient estimation,
but more experiments will need to be carried out to confirm
this suspicion.

A. Computation Time

Gradient descent with zeroth order batch gradients on the
cost landscape with randomized smoothing, as described in
Sec. IV-B, takes approximately 11 minutes for 100 iterations
on 50 initial points, with 100 pairs of q and u perturba-
tions. Fig. 6-9 show experiments run with these parameters.
The time complexity is O(nsamples · nperturbations · nincrements ·
niterations/nthreads), where nsamples is the number of initial sample
points (Alg. 1), nperturbations is the number of pairs of position
and action perturbations (8), nincrements is the number of incre-
mental steps the dynamics are rolled out over (Sec. IV-C3),
and nthreads is the number of parallel instances used to roll out
the dynamics.

Gradient descent for analytic smoothing of contact dynam-
ics takes approximately 17.5 seconds for 700 iterations on 50
initial points, (as shown in Fig. 13-16). The time complexity
is O(nsamples · niterations/nthreads).

All experiments were run on a Linux machine with 31.3
GB of RAM, with an Intel Core i7-6700 CPU @ 3.40GHz x
8 processor.

VII. CONCLUSION AND FUTURE WORK

This report has described some initial progress towards
creating a generalizable goal-conditioned contact sampler. In
this section we lay out our roadmap for continued development
of the method.

1) Implement a metric for comparing performance of
different parameters and methods. In our first set of
experiments, we collected the mean final cost of all
samples as well as the mean final cost of the n-best
samples in an attempt to compare performance between

runs. While this can be used to compare the perfor-
mance of different parameters within the same method
(randomized smoothing of cost or analytic smoothing of
dynamics), it cannot be used to compare across different
methods (since the cost means different things in the
different methods). Furthermore, it does not penalize the
sample points being far away from the object’s surface.
We feel a better performance metric would be the n-best
cost after a one-step trajectory optimization (calculated
using least-squares) to find the optimal u∗

r , capped at
a max ur, on the analytically smoothed dynamics. We
believe this is a good metric as it closely parallels the
way the contact sampler will be used within RRT where
we would like to find a robot configuration that will get
us as far as possible towards a sub-goal.

2) Evaluate performance impact of non-physical ef-
fects. Using the new metric described above, determine
whether incremental rollouts of the dynamics is truly
necessary as it significantly increases runtime of the
zeroth order randomized smoothing method.

3) Rescaling the cost landscapes. We’d like to recompute
the cost landscapes shown in this report but with the cost
values normalized to allow differences other than scale
caused by changing the parameters to become more
apparent.

4) Try a variance/log barrier weight schedule. This could
help with having the final positions actually be in contact
with the object, while speeding up convergence.

5) Try using the Torch optimizer over our vanilla
gradient descent implementation.

6) Explore gradient estimation based on min instead of
mean. As described in Sec. IV-C2 this could speed up
runtimes and improve the quality of the contact samples.

7) Implement the method for more complex rigid body
manipulators.

8) Implement the method for deformable objects.
9) Integrate the contact sampling method into RRT.

10) Integrate the contact sampling method into trajec-
tory optimization.

While our initial examples simple, and significant work
remains to be done, our early experiments make us optimistic
that we’ll be able to develop a practical and effective method
for contact sampling. We are excited to see the new capabilities
that this will enable in contact-rich manipulation planners!
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