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Abstract—The paper explores the feasibility and performance
of Discrete-time Control Contraction Metrics (DCCM) on a
planar pushing system with smoothed dynamics, to address
the challenges of non-smoothness and underactuation of control
through contact. While they were unable to achieve many of
the theoretical advantages of the control contraction metric
framework, they managed to demonstrate the feasibility of
synthesizing and running a DCCM controller on a planar pushing
system with highly smoothed dynamics. The limitations and gaps
in applying their implementation in the real world are also
discussed. The paper serves as a good starting point for future
work to realize the full potential of DCCMs applied to systems
with contact.

I. INTRODUCTION

Planning and control through contact is an important capa-
bility in robotics. In order for robots to manipulate objects in
their environment, they need to be able to reason about how to
make and break contact. However, this has proved challenging
for model-based methods due to two factors:

1) Non-smooth or hybrid nature of contact dynamics.
Contact dynamics involve different modes of contact
(e.g. sticking, sliding, no-contact), each with smooth
but different dynamics and constraints. When switching
between modes, the dynamics are discontinuous and
change abruptly. This poses problems for gradient-based
methods such as optimal control, as their locally linear
models constructed using gradients quickly become in-
accurate [1].

2) Underactuatedness of the system. Systems that involve
contact are underactuated as the state of the unactuated
objects cannot be controlled directly. Instead, control
inputs to the robot are mediated through friction cones
at contact points between the robot and the object, thus
severely limiting the control authority of the inputs.

Current methods for model based planning and control
through contact typically fall into one of three categories:
methods that apply smoothing to the dynamics [1], [2], meth-
ods that explicitly enumerate the contact modes [3], and meth-
ods that implicitly reason about the contact modes [4]–[6].
Two methods that have been applied to the control of nonlinear
underactuated systems are Linear Quadratic Regulator (LQR)-
Trees and Control Contraction Metrics (CCM). LQR-Trees

use locally optimal linear control policies to stabilize planned
trajectories. Each trajectory has a basin of attraction and these
regions are pieced together to cover a larger region of state
space [7]. CCMs, first established in [8], were shown to be
effective at controlling underactuated systems in [9].

CCMs theoretically provide 4 key advantages over other
control methods as described in [8]–[11]:

1) Certificates of stability and convergence rates. In
general, nonlinear MPC does not provide guarantees
on stability or performance. While Control Lyapunov
Functions (CLFs) and LQR based methods can produce
certificates, the guarantees provided by CCMs are not
tied to specific equilbria or trajectories.

2) Trajectory independent controllers. CCMs generate
controllers that stabilize every feasible trajectory in a
region, while CLFs and LQR based methods require
designing controllers for each trajectory and stitching
them together to cover larger regions.

3) Convex synthesis of the controller. The synthesis
of CCMs can be formulated as a convex optimization
problem, which is easier to solve numerically and can
leverage powerful tools like SOS programming.

4) Faster online computation of the control law. The
online computation of the geodesic in CCMs is typically
faster and simpler than solving the nonlinear optimal
control problem as is done in MPC.

In this paper we use the analytic smoothing of con-
tact dynamics described in [1] to address the challenge of
non-smoothness, and explore the effectiveness of building a
Discrete-time Control Contraction Metric (DCCM) as demon-
strated by [11] on top of that smoothed system to handle the
underactuatedness and nonlinearity of the system. Our hope
was that we would be able to synthesize a DCCM for a system
with low amounts of smoothing and that this controller would
also stabilize a ”real-world” system with exact dynamics,
however we did not manage to achieve that goal. We only
managed to synthesize a controller that worked around a
particular desired trajectory under significant smoothing, but
are hopeful that our findings will serve as a good jumping off
points for future work to realize the full potential of DCCMs
applied to systems with contact.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Quasistatic Assumption

We will assume that our system is quasistatic, meaning the
velocities and accelerations of the system are 0 at the end of
each time step [1]. This corresponds to having a high amount
of damping and is a reasonable assumption in the 2D planar
pushing setup where we restrict pushing velocities to be low
and there is a large amount of friction between the object and
table surface. As a result, the state of our system only consists
of positions.

B. Analytically Smoothed Contact Dynamics

In this work we use the analytically smoothed contact dy-
namics and corresponding simulator developed by the authors
of [1]. Contact dynamics are formulated as an unconstrained
convex program where the contact and friction constraints are
moved into the objective function using a log barrier function.
The effect of this is that there is a log barrier penalty for
violating the contact constraints. Constraints can exert force
even if they are not active and this translates to producing a
force at a distance.

We plot the force at a distance effect of the smoothed contact
dynamics in figure (1). We see that for a high weight, which
corresponds to a small force at a distance, the next bx is close
to 0, but as the log barrier weight decreases, the box is pushed
further to the right for the same position of the spherical robot.

Fig. 1: Force at a distance effect of smoothed contact dynam-
ics. (a) A system consisting of an actuated spherical robot at
x = −1 and unactuated box at x = 0. (b) The next bx after
rolling out one step of the analytically smoothed dynamics
with different log barrier weights.

C. Planar Pushing System and its Contraction Condition

The state of system is represented as:

x =
[
bx by bθ sx sy

]⊤
(1)

Control inputs u are absolute position commands for the
sphere

u =

[
ux

uy

]
(2)

The system evolves nonlinearly and is control affine. The
discrete-time dynamics are defined as

xk+1 = f(xk) + g(xk)uk (3)

where f and g are smooth functions due to the smoothing of
the contact dynamics described in section (II-B).

Fig. 2: The components of state x and position command u

The differential dynamics are defined as

δxk+1
= A(xk)δxk

+B(xk)δuk
(4)

where A(xk) = ∂(f(xk)+g(xk)uk)
∂xk

∈ R5×5 and B(xk) =
∂(f(xk)+g(xk)uk)

∂uk
∈ R5×2 are the Jacobians of the dynamics.

We can define the differential state feedback control law

δuk
= K(xk)δxk

(5)

where K is the state dependent feedback gain matrix.
We denote the generalized infinitesimal squared distance in

the positive definite metric M as

Vk = δ⊤xk
Mkδxk

(6)

By substituting the differential dynamics (4) and control
law (5) into (6), we can see that the generalized infinitesimal
squared distance at the next time step is

Vk+1 = δ⊤xk+1
Mk+1δxk+1

= δ⊤xk
(Ak +BkKk)

⊤Mk+1(Ak +BkKk)δxk

(7)

The contraction condition can then be expressed as

Vk+1 − Vk ≤ −βVk < 0 ∀x, δx ∈ R5, β ∈ (0, 1] (8)

where the contraction rate is (1− β).
Equation (8) is equivalent to

(Ak +BkKk)
⊤Mk+1(Ak +BkKk)− (1− β)Mk < 0 (9)

If we are able to find a metric M and control gain K that
satisfy the contraction condition (9), we can find a stabilizing
controller that is able to track arbitrary feasible trajectories.
To run the controller online, at each time step we will need to
find the minimum length (w.r.t the metric M ) curve between
our desired state x∗

k and our actual state xk.
For a smooth curve c(s), s ∈ [0, 1] that connects two points

in state space x0 and x1, [8] defines the Riemannian length
and energy of the curve as

L(c) =

∫ 1

0

√
∂c(s)

∂s

⊤
M(c(s))

∂c(s)

∂s
ds

E(c) =

∫ 1

0

L(c)2ds

(10)

The geodesic γ(x0, x1) is the curve that minimizes the
Riemannian length and energy between x0 and x1

γ(x0, x1) = argmin
c

L(c)

= argmin
c

E(c)
(11)
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By the contraction condition we enforced, we see that the
Riemannian energy of geodesic decreases exponentially as the
system evolves and thus can be thought of as an incremental
Lyapunov function [8].

The controller that tracks the desired trajectory (x∗, u∗) will
then be

uk = u∗
k +

∫ 1

0

K(γ(s))
∂γ(s)

∂s
(12)

III. METHODS

A. Contraction Metric and Controller Synthesis

1) Sum of Squares (SOS) Programming: [11] showed that
equation (9) can be transformed via Schur’s complement as
well as left and right multiplying by an invertible matrix into[

Wk+1 Ak +BkLk

(Ak +BkLk)
⊤ (1− β)Wk

]
> 0 (13)

where W := M−1 and L := KW .
In order to synthesize the contraction metric and controller,

we use the SOS programming formulation described in [11]
with some slight modifications

min
lc,wc,r

r

s.t. ∀k,w⊤Ωw − rw⊤w ∈ Σ(xk, uk, w)

r ≥ 0.1

(14)

where Σ(xk, uk, w) is the set of SOS polynomials that satisfy
the contraction condition in equation (13). lc are the polyno-
mial coefficients of L and wc are the polynomial coefficients
of W .

Ω =

[
Wk+1 Ak +BkLk

(Ak +BkLk)
⊤ (1− β)Wk

]

Wk =

W11k · · · W15k
...

. . .
...

W15k · · · W55k


Lk =

[
L11k · · · L15k

L21k · · · L25k

]
(15)

where each W..k = w..cv(xk) is a polynomial constructed
from the row vector of coefficients of w..c and the monomial
basis vector v(xk). For example, if the degree of the polyno-
mial is chosen to be 4,

v(xk) = [x4
k4
, xk3x

3
k4
, x2

k3
x2
k4
, · · · , xk1 , xk0 , 1] (16)

where v(xk) has 126 elements. L..k = l..cv(xk) is similarly
defined.

In general, the dimensions of the matrices are as follows: Ω :
2 · dim(x)× 2 · dim(x),W : dim(x)× dim(x), L : dim(u)×
dim(x)

We note the difference in the way we use the slack variable
r compared to [11]. In [11], the constraints on the optimization
program are w⊤Ωw − rI ∈ Σ(xk, uk, w), r ≥ 0. In practice,
we found that in some cases, especially when generating a
higher degree metric, that the solver would return a trivial
solution where r, wc and lc are extremely small numbers (on
the order of 1e−17). By setting a higher bound on r, we force

the solver to find a solution where the contraction condition
is satisfied with a greater buffer and the returned coefficients
of wc and lc are larger.

Another difference is that we do not have closed form
equations for the A and B matrices which would allow us
to enforce the contraction conditions over all states. Instead,
we sample a set of (state, control action) pairs and enforce the
contraction condition over these samples. We use the contact
dynamics solver described in [1] to calculate the next state
xk+1, and the Jacobians Ak and Bk, for each sample of the
current state xk and control action uk, and substitute these
values into the constraints in optimization program (14). Since
M is smooth, we can expect the contraction condition to
be satisfied over at least a small local region around each
sample. However, if the samples are too sparse, the contraction
condition may not be satisfied over all the states around the
desired trajectory.

We solve this SOS program using Drake’s Mathematical
Program [12], which uses MOSEK under the hood to solve
this Semidefinite Program (SDP).

2) Sampling Strategy: To get a contraction metric valid
over the entire state space we would have to densely sample
the entire state space. However, the available RAM on the
machine used set an upper bound of the size of the optimiza-
tion program we were able to run. For a monomial basis of
degree 4, the maximum number of samples we could add to
our constraints was around 2000. Thus, to get a contraction
metric and controller that had good performance at least in
the vicinity of the desired trajectory, we only sampled states
and control actions from a small region around the desired
trajectory as shown in figure (3). This is a clear limitation of
the current approach and future work would involve finding a
way to enforce the contraction condition over a larger portion
of state space.

Fig. 3: Sampled box and sphere positions around the circular
target trajectory

B. Online Geodesic and Controller Computation

With the contraction metric synthesized, we now need
to compute the control action that enforces the contraction
condition.

In order to numerically approximate the geodesic γ(x∗
k, xk),

we discretize the curve into N segments and solve the follow-
ing optimization program
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γ̄(x∗
k, xk) = argmin

x[·],∆xs[·],
∆s[·],m[·],y[·]

N−1∑
i=0

y[i] + ∆s[i]2

s.t. ∀i, y ≥ ∆s[i]∆xs[i]
⊤M(m[i])∆xs[i]

x[0] = x∗
k, x[N ] = xk

∀i, x[i+ 1] = x[i] + ∆xs[i]∆s[i]

∀i,∆s[i] > 0,

N−1∑
i=0

∆s[i] = 1

∀i,M(m[i])W (x[i]) = I
(17)

where x[i] is the state at the start of the ith segment of
the geodesic, ∆s[i] is a small positive scalar, ∆xs[i] is the
discretized displacement vector, y[i] is a slack variable that
represents the Riemannian energy and N is the number of
segments the geodesic γ is discretized into. m[i] is a slack
variable introduced such that the 5 × 5 symbolic matrix
W (x[i]) does not need to be explicitly inverted which was
found to be a severe computational bottleneck. The con-
straint M(m[i])W (x[i]) = I is a surrogate for enforcing
M(m[i]) = W (x[i])−1. Adding the regularization term ∆s[i]2

to the objective serves to spread out the discretized points
evenly along the geodesic.

To solve this non-convex optimization problem we use
Drake’s Mathematical Program, this time using SNOPT under
the hood [12].

With the geodesic γ̄(x∗
k, xk) computed, we can compute the

control action uk that enforces the contraction condition (9)

uk = u∗
k +

N−1∑
i=0

∆s[i]K(x[i])∆xs[i]

= u∗
k +

N−1∑
i=0

∆s[i]L(x[i])W−1(x[i])∆xs[i]

(18)

An important point to note is that the integration is done
from x∗

k to xk and not the other way around. While it might
seem intuitive that we want to calculate the δu that brings the
system from xk to x∗

k, this is actually not the right way to think
about it. First, the δu in equation 5 does not lead to a change
in state δx on the right side of the same equation. Instead, 5
tells us for a change in state δx from a nominal trajectory,
what is the corresponding δu that enforces the contraction
condition. In this case, the nominal trajectory is x∗ and u∗,
thus to calculate the δu that enforces the contraction condition,
we need to integrate from x∗

k to xk.

IV. EXPERIMENTAL SETUP

A. Creating Feasible Desired Trajectories

To create the desired trajectory, we first parameterized an
arbitrary circular trajectory with the robot behind the object
at each time step and the object slowly rotating as it travels
around the circle. We then rolled out the dynamics from the
initial condition, using the position of the robot at the next
time step as the open loop position command for the robot

and recorded the actual positions of the object under this open
loop control. We created two feasible circular trajectories of
slightly different radii in this way and spliced them together
in the middle (t = 5) in order to introduce a step change
in the desired trajectory. Finally, we introduce an additional
initial disturbance by adding an offset to the initial state of
the system from the first state of the desired trajectory. We do
this process twice to create desired trajectories for both the
log barrier weight 10 and 100 levels of smoothing.

V. RESULTS AND DISCUSSION

Our original goal was to synthesize a DCCM with a small
amount of smoothing that would transfer well to stabilizing
the real system to arbitrary feasible desired trajectories under
non-smooth, exact contact dynamics. Unfortunately, we were
not able to achieve this goal. We found that when using a
small amount of smoothing, a higher degree monomial basis
was required to enforce the contraction condition across all
samples. Furthermore, since the dynamics were less smooth,
a greater density of samples was required in order for the
contraction condition to hold around the desired trajectory.
This can be seen from the result in table (I) where even though
we were able to synthesize DCCMs for 500 samples for both
log barrier weights, the DCCM for log barrier weight 10 was
able to stabilize the system while the DCCM for log barrier
weight 100 was not.

Both of these factors (requiring a higher degree, and more
samples) led to the optimization (14) becoming intractable due
to the computer running out of memory. Ultimately, we were
only able to find a stabilizing controller for a log barrier weight
of 10, which corresponds to the robot exerting 0.1N of force
on an object that is 1m away.

Log
Barrier
Weight

Deg. # Samples 100 500 1000 2000 3000

10
4 Synthesizes ✓ ✓ ✓ ✓ !

Stabilizes ✗ ✓ ✓ ✓ -

6 Synthesizes ✓ ✓ ! - -

Stabilizes ✗ ✗ - - -

100
4 Synthesizes ✓ ✓ ✗ - -

Stabilizes ✗ ✗ - - -

6 Synthesizes ✓ ✓ ! - -

Stabilizes ✗ ✗ - - -

TABLE I: Feasibility (whether a DCCM can be synthesized)
and performance (whether the found DCCM stabilizes to
the desired trajectory) across different log barrier weights
(10 is high smoothing, 100 is low smoothing), degree of
monomial basis used, and number of sampled points at which
the contraction condition is enforced. Symbols: ✓(succeeds),
✗(fails), ! (program crashes), - (did not/could not run test).

A. Controller Performance

Figure (4) demonstrates the performance of the controller
synthesized and run with parameters listed in table (II). We
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see that the controller is able to stabilize the system from the
initial offset at t = 0 and step change in desired trajectory at
t = 5, with the geodesic energy E(γ̄) decreasing exponentially
after each instantaneous reference change.

Log Barrier
Weight

Deg. # Samples # Geodesic Segments β

10 4 2000 1 0.1

TABLE II: Parameters of the controller shown in figure (4),
where # Geodesic Segments is the parameter N in optimiza-
tion problem 17, and β = (1−convergence rate w.r.t. DCCM)
as shown in 15.

Fig. 4: Performance of DCCM with parameters (II); (a) desired
state x∗ and actual state x; (b) nominal input u∗ and DCCM
input u; (c) geodesic energy E(γ̄), (10), (17); (d) l2-norm
tracking error; (c) desired and actual positions of the box at
various time steps.

B. Effect of number of samples on controller performance

Figure (5) shows the performance of 3 controllers, synthe-
sized with 500, 1000, and 2000 samples respectively. Note that
the controller synthesized with 100 samples was not included
in the figure as the controller was not able to stabilize the
system. We can see that as the number of samples increases,
the controller is better able to regulate the geodesic energy.
For the controller with 500 samples, geodesic energy does not
exponentially decrease, in fact, it increases at times. We reason
that this is due to the contraction condition not being enforced
over the states of the trajectory due to the sparse sampling.

It is also interesting to note that even though the 2000
sample controller consistently has the lowest geodesic energy,
and fastest decrease in geodesic energy after instantaneous
reference change, it also has the largest l2-norm tracking
error. In order to stabilize the system and make the geodesic
energy decrease exponentially, the sphere robot has to deviate
a greater amount from the reference trajectory in order to push
the box back towards the reference trajectory, leading to the
spike in error.

Log Barrier
Weight

Deg. # Samples # Geodesic
Segments

β

10 4 500, 1000, 2000 1 0.1

TABLE III: Parameters of the controllers shown in figure 5.

Fig. 5: Comparison of performance of controllers synthesized
with varying numbers of samples. Parameters listed in table
(III); (a) geodesic energy E(γ̄), (10), (17); (b) l2-norm track-
ing error.

C. Discretization of Geodesic

In testing, we found that trying to find the geodesic for the
planar pushing system with N > 1 (17) consistently failed.
This was slightly unexpected as even though there are more
decision variables for larger N , and while acknowledging that
this is a non-convex problem, it was interesting that SNOPT
was not able to find even the straight line solution. We were
able to get larger Ns in our implementation of the simpler 2-
dimensional CSTR dynamical system from [11], but did notice
that it significantly increased the online computation time.

For future work, we hope to explore warm-starting the
larger N geodesic optimization with the solution of the
N = 1 geodesic, and then warm starting subsequent geodesic
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optimizations with the previous time-step’s solution. Given
smoothness of the system and the metric, the previous solution
should serve as a good initial guess.

D. Effect of Convergence Rates on DCCM Synthesis

Another peculiar observation of our implementation was
that synthesis of the DCCM consistently failed when using
β > 0.3. We think that it would be strictly easier to satisfy
the slower convergence rate enforced by a larger β, however
that is not what we found. Furthermore, while we were able
to synthesize a DCCM with 500 samples for both β = 0.1
and β = 0.3, the β = 0.1 controller was able to stabilize the
system while the β = 0.3 controller was not. This may speak
to the brittleness of the controller when using insufficient
samples, or it may be indicative of some underlying issue that
is also contributing to the synthesis of controllers with larger
β failing. More investigation into this issue is required to fully
understand it.

E. Computation Time

The DCCM synthesis with a degree 4 monomial basis and
500 samples took approximately 18 minutes, while using a
degree 6 basis with the same number of samples took ap-
proximately 3 hours 20 minutes. The synthesis of the DCCM
with degree 4 basis and 2000 samples shown in figure 4 took
approximately 1 hour.

Online computation of the 1-segment geodesic for a DCCM
synthesized with degree 4 basis took 1.54 seconds, while the
DCCM synthesized with degree 6 basis took 3.81 seconds.

All experiments were run on a Linux machine with 31.3
GB of RAM, with an Intel Core i7-6700 CPU @ 3.40GHz x
8 processor.

VI. CONCLUSION AND FUTURE WORK

The feasibility of synthesizing and running a DCCM con-
troller on a planar pushing system with smoothed dynamics
was demonstrated in this paper. Limitations of this preliminary
implementation were also discussed. Unfortunately, in this
work we were largely unable to achieve the benefits discussed
in section (I):

1) Certificates of stability and convergence rates. Two
major gaps remain to be overcome in order to certify
the stability and performance of a DCCM controller on
a real system. The first is that theoretical arguments
need to be made about density of samples on which
the contraction condition is enforced and a connection
drawn to the smoothness of the system in order to
bound the error between the closed loop dynamics of
the sample-based DCCM, and the smoothed dynamics.
Second, the error between the smooth dynamics and
exact dynamics also needs to be bounded. Only after
mathematically accounting for these two sources of ”sim
to real” gap will we be able to certify the controller on
the real system.

2) Trajectory independent controllers. We were not able
to realize this benefit in our implementation due to not

having closed form equations of the A and B matrices of
our system and computational limitations on the number
of samples we could add to our synthesis SOS program.
This resulted in low coverage of the state space and
meant that there was only a narrow basin of attraction
around our desired trajectory.

3) Convex synthesis of the controller. While SOS pro-
gramming was able to synthesize DCCMs that worked,
we ran into challenges with the high degree of monomial
basis required. Future work should address this issue,
possibly by applying more computational power to the
system, or exploring other synthesis methods such as
learning the contraction metric [13], [14]

4) Faster online computation of the control law. In this
paper we used a basic implementation of the geodesic
calculation. We avoided working with the symbolic in-
version of the W matrix in (17) but that made the burden
of finding the inverse shift to the optimizer. In future
work, more advanced methods should be explored, such
as the warm starting schemes described in section (V-C)
or the pseudospectral approach described in [15].

Another interesting direction we are excited to explore
is reformulating the problem such that we only care about
stabilizing the state of the object to the desired trajectory and
do not require the trajectories of the robot to be contracting.
Stabilization of submanifolds is briefly discussed in [8], but
more work need to be done to translate it to the discrete-
time case. This formulation may be more true to our goals of
manipulating the object and have the benefit of reducing the
dimensionality of the problem which might make both offline
and online calculations easier.

While more work needs to be done to realize the full benefits
of applying the control contraction metric framework to the
problem of control through contact, we are hopeful that this
paper serves as a good first step on that path.
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