
One-arm Juggling
6.4210/2 Robot Manipulation Project Final Report

Shao Yuan Chew Chia
Harvard University
Cambridge, MA

shaoyuan chewchia@college.harvard.edu

David Jin
Massachusetts Institute of Technology

Cambridge, MA
jindavid@mit.edu

Richard Li
Massachusetts Institute of Technology

Cambridge, MA
mli97@mit.edu

Abstract—Picking and placing static objects with robot is
becoming more common and vital in robotics research and even
our daily lives. However, interacting with moving objects in a
dynamical system is yet a difficult task as it requires accuracy
in both space and time. This motivates us to work on such a
course project that we design a system that allows a robot arm
juggle. In this report, we present our methods and results of
how we make the Kuka iiwa arm juggle with a squash-like rigid
ball. We successfully let it juggle one ball to 2 meters high, and
even juggle three balls, We also investigate the perception system
that can help us with transferring from simulation to real world
situation.

I. INTRODUCTION

Seeing many examples of pick and place of static objects,
we would like to design a robotic system that can interact with
moving objects. We find the dynamic setting very challenging
yet exciting. Compared to the static situation, this setting re-
quires a higher level of the manipulation system and perception
system. Therefore, Our goal is to make a Kuka iiwa arm juggle
balls like a human juggler in simulation. By juggling we mean
the gripper repeatedly catches (grasp), moves with (hold), and
then re-throws (release) the ball(s), in a smooth motion. The
arm has to match the velocity of the falling ball such that
when catching the ball, from the gripper’s frame, the ball is not
moving. The gripper then smoothly transitions to the throwing
velocity and release the ball at exactly the right time such that
the trajectory of the ball follows a planned parabolic trajectory.
We also include perception in our pipeline, using multiple
Intel RealSense depth cameras. To initialize the juggling, we
throw balls from a desired position with a desired initial
velocity towards the gripper at the catch position. Due to
gravity, balls in the air will inevitably fall to the ground, which
creates a real-time constraint for our system. We carefully
optimize the calculation of trajectory and arms/gripper poses
so that the robot can catch the ball in time. Lastly, since
we aim at juggling multiple balls, we design our trajectory
optimization to update for each ball while tracking their order.
We successfully make the robot arm juggles with at most three
balls also at various heights.

II. RELATED TOPICS AND PRIOR WORKS

A. Related Topics in Class

1) Object Motion planning: We perform object tracking
in simulation to calculate the trajectory of the object being

juggled. It is essential to model the trajectories correctly based
on the properties of the object so that when we transfer to real
word manipulation using the robot arm we don’t have too large
of a gap. Once we have the predicted position of the object
at a specific time, we plan the motion of the gripper so that
it can accurately maneuver in space to perform catching and
throwing. We use inverse kinematics so that we can use the de-
sired endofactor position to derive the motion of the arm from
Chapter 8. We obtain the trajectory with kinematic trajectory
optimization. We also use differential inverse kinematics to
convert spatial velocities to joint velocities.

2) Perception: For transferring everything from simulation
to real world juggling, we need to use perception through
either depth cameras to track the object being juggled in real
time with the knowledge from Chapter 4. There will be another
round of tuning of how to deal with noise in the point cloud
and how tracking of the object and motion planning will need
to be done.

B. Prior Works

Our idea is similar to the previous year’s course project of
juggling a ping pong ball [1]. However, our project differs
from theirs in two key ways: first, we want to catch, hold
and re-throw the ball with the gripper instead of hitting the
ball with the paddle; second, we want to juggle more than
one ball; third, we want to incorporate perception and make
it sufficiently robust such that we can juggle one ball on
the real robot. Some previous related work built systems for
throwing based on physical analysis by approximating the
dynamics of objects [2] [3]. Those systems then tune the
control parameters to control the trajectory. However, the real-
world situation has plenty of factors that are not captured by
the system, which leads to a low success rate.) Zeng et al. have
designed a tossing bot that predicts the control parameters of
the gripper via visual observation through deep learning [4].
By the learning approach, the tossing bot can decrease the
error through implicit parameters in the model that were not
accounted for in the dynamical systems.

Researchers have designed multiple different robotics sys-
tems that can juggle in some way, including but not limited to
quadrotors [5], one-degree-of-freedom robots [6], and robotic
arms [7] either independently as well as cooperatively. For
multiple-object juggling, Rizzi and Koditschek created a robot

to work with multiple balls with a most simple juggling
system, a ball, and a fixed planar paddle [8].

III. EXPERIMENTAL SETUPS

A. Manipulation Station

For our physical setup, The object we are juggling is a
rigid ball that has the same dimensions as a squash ball. The
arm we’ve chosen is the Kuka iiwa. It has a reach of 0.8
meters, a load capacity of 7kg, and 7 degrees of freedom.
The gripper we’re using is the WSG 2-finger gripper by Weiss
Robotics. Notice that juggling with 2 fingers here is like trying
to juggle with chopsticks. It’ll force us to be really precise
when throwing and catching.

B. Perception

We use three Intel RealSense depth cameras. Each of them
produces a point cloud. We combine the point clouds, subtract
the arm and then fit spheres to the point cloud to estimate the
position of the ball.

IV. METHODS

A. Ball Trajectory Calculation

1) Choosing the throw and catch positions: To start, we
need to choose the points at which we are going to throw and
catch. We attempt two approaches, the first is global inverse
kinematics, where we fix the two x,y,z, spatial positions
defined in the world frame, and then calculate what joint
angles would lead to our gripper being at those positions, The
second is forward kinematics where we first decide on a set
of comfortable joint angles and then calculate where in space
the gripper will end up being. Since we don’t have specific re-
quirements about where we need to throw and catch from, and
what’s really important is that we can comfortably throw and
catch from those positions, the forward kinematics approach
worked better for us. The following explanation describes what
“comfortable” means for robot joints. Each joint has position
limits if we add another joint, our configuration is a 2d shape.
points outside this shape are not reachable. Given we have
7 joints, each joint adds another dimension on this graph, so
we can try to imagine a 7-dimensional volume which gives
all allowable sets of joint configurations. What we want is for
the throw and catch positions to be well within that volume,
not at the edges so that we aren’t in any danger of needing
our joint configuration to be somewhere outside the allowable
range in order to reach a nearby spatial position.

2) Calculating throw velocity, catch velocity, and time
duration: After determining the throw and catch positions
pt = (ptx, p

t
y, p

t
z)

T and pc = (pcx, p
c
y, p

c
z)

T and their com-
fortable joint configurations, we use the formula of projectile
motions to calculate what spatial velocities vt the ball needs
to have at the throw point to reach a given height h, as well

as when the ball will pass through the catch point, and what
velocity vc it will have,

T =

√
2h

g

vt =

(pcx − ptx)/2T
(pcy − pty)/2T

gT

vc =

(pcx − ptx)/2T
(pcy − pty)/2T

−gT

 ,

(1)

where g = 9.81m/s2 is the gavitational constant. Then, we
also want to get the corresponding joint velocity. We first
calculate the Jacobian matrix J of translational velocity at the
joint configuration. By multiplying the pseudoinverse of the
Jacobian matrix J with the spatial velocities v, we are able to
obtain the joint velocities V for both catch and throw,

V = J†v.

The reason why we use pseudoinverse but not regular inverse
is that the Jacobian matrix J is not a square matrix as the
dimension of spatial velocities is 3 and the dimension of joint
velocities is 7.

B. Kinematic Trajectory Optimization

1) Initialization: We use kinematic trajectory optimization
to find a trajectory that satisfies multiple constraints for the
robot arm. We want to minimize the length of the path, subject
to the following constraints: first we constrain the positions
and velocities at the throw and catch points. Second, the entire
duration of the arm trajectory needs to be exactly the duration
the ball is in the air for, and third we ensure that the joints
on the iiwa robot don’t exceed their position, velocity, or
acceleration limits. Here is the optimization problem of the
trajectory between throw and catch with N control points:

min
q0,q1,...,qN

N∑
n=0

||qn+1 − qn||22

s.t. q0 = qthrow

qN = qcatch

v0 = vthrow

vN = vcatch

qlower ≤ q ≤ qupper

vlower ≤ v ≤ vupper

alower ≤ a ≤ aupper

tN − t0 = T

(2)

2) Update: We not only use kinematic trajectory optimiza-
tion when initializing the trajectory for the robot arm but
we also use it for updating the new trajectory every time
after it throws. This update is necessary because, without
such an update, the gripper is trying to catch the ball where
it previously thinks where the ball is from the initialization

instead of where the ball actually is. To account for this we
change our planner so that it updates the trajectory based on
the actual throw position and velocity right after it lets go of
the ball. Given the actual position and velocity at the throw
point, we can calculate where the ball will be a certain duration
later. Then, we use the differential inverse kinematic to find
the positions and velocities in the joint space before sending
to the update of kinematic trajectory optimization.

Fig. 1. Diagram of kinematic trajectory optimization (KTO) initialization
and update: The inputs are thrown position qthrow , catch position qcatch,
and the max height h of the projectile motion of the ball. Then, we obtain
throw velocity Vthrow , catch velocity Vcatch, and time duration T for the
projectile. When update, we get the actual catch position and velocity as
q̃catch and Ṽcatch.

C. Differential Inverse Kinematic

For converting spatial velocities/positions into joint space,
we think of two methods: the first is to apply spatial position
and velocity constraints at the predicted catch point, and the
second is to convert the spatial position to joint position using
differential inverse kinematics. The first one does not work
because our solver could not find solutions given all position
and velocity constraints are in joint space. We then fall back
to the other method in which we stick to only giving it
joint position and velocity constraints. Due to the fact that
there could be multiple joint configurations for one spatial
position, we could not use inverse kinematics to convert from
spatial space to joint space. Thus, we use differential inverse
kinematics to find the joint positions and velocities.

There are two difficulties when applying this method. First,
as discussed earlier it might be near the boundary of the vol-
ume that defines permissible configurations. Second, our throw
and catch joint configurations were chosen particularly to be
very close together in configuration space, and an arbitrary
solution would probably be further away in configuration space
meaning the arm has to move more to reach that particular
configuration, which might exceed the time the robot needs
to maneuver. Using differential inverse kinematics, we start
from our comfortable joint configuration and iteratively nudge
the joints such that it gets closer and closer to our desired
spatial position. Through this way, we know that the two
configurations will be near each other and only a relatively
small adjustment needs to be made in the trajectory.

D. Inverse Dynamics Controller

Due to the precision that we need in order to catch and
throw the ball at a very specific position, velocity and time,
any small delay will end up in a bigger error that leads to
a failure to juggle. To solve this problem we need to peel
back the layers of the onion and see how the commands
we are sending to the iiwa actually get translated into the
joints moving. Originally we are sending our desired positions
to a system that interpolates the desired state with discrete
derivatives. It takes discrete derivatives of the positions you
send it to generate velocities, and the positions and velocities
together make up the state. The desired state is then fed
into the inverse dynamics controller which spits out the force
commands to send to the arm. To increase the accuracy, and
minimize the delay, we cut out the state interpolator and take
analytical derivatives on our position b-spline trajectory to get
our desired velocities and accelerations and feed them into
the inverse dynamics controller directly. While the original
controller was error based, meaning it only makes corrections
when there is a deviation between desired and measured values
For the new controller, once it’s on the trajectory, it will be
given the force command it needs to stay on the trajectory

E. Perception

We needed a perception system to integrate the robot
juggling system into a real iiwa robot since we will need
to measure the real-time position and velocity of the ball to
account for real-world perturbation. We would then be able
to use the position and time difference between two adjacent
points on the trajectory to estimate the velocity and predict
future trajectory to optimize the gripper pose.

We can first generate point clouds from the depth and RGB
images using used three Intel Real-sense cameras. We then
take the average of the X, Y, and Z positions of the cloud
to estimate the center position of the ball. Shortly after we
realized that for this approach we would be getting a point
cloud with not only the ball but also the gripper as well, which
doesn’t allow us to accurately predict the center of the ball.
So we thought of other different ways to remove the gripper
from the point cloud:

1) Training a neural net of the gripper and the ball to create
labeled images

2) Obtain the collision geometry of the arm and gripper to
subtract from the concatenated point cloud

3) Obtain the labeled image from the manipulation station
and use the masked image to crop out everything but
the ball

We chose the third approach. We first obtain the masked
image of the ball, and get the pixels from the masked image,
then match the corresponding pixels with the depth image to
generate an image of the ball with the depth data. We can
then generate a point cloud from this image. However, we
still can’t simply take an average of this point cloud, as there
would only be a partial point cloud of the ball left due to
the gripper blocking the camera view. To overcome this, we

decided to fit a sphere to the point cloud to find the center
and radius of the ball through least square optimization. This
way we can still find the center position even if we only have
a partial point cloud of the ball.

V. RESULT AND DISCUSSION

A. One ball Juggling

At first, we are having trouble making the robot juggles one
ball. The two major difficulties are

1) the actual velocities of the gripper are different from we
plan according to the kinematic trajectory optimization,
and

2) actual catch position is different from the planned catch
position.

We use inputting acceleration to the inverse dynamics con-
troller to solve the first one and update the kinematic trajectory
optimization after the throw to solve the other one. We also
test the one ball juggling successfully with various heights,
e.g. 0.2m, 0.75m, and even 2m.

Fig. 2. A screenshot of throwing when juggling one ball at 2m

Fig. 3. A screenshot of catching when juggling one ball at 2m

B. Two ball Juggling

To make the jump to juggling multiple balls we modify our
planner for updating the trajectory. When trying to juggle two
balls, after throwing the first ball, it has to catch and throw the
second ball, all in the time that the first ball is in the air. Thus,
there is much less time to move between the throw and catch
positions. We can keep most of our planner exactly the same,
but after a ball is thrown, instead of re-planning the trajectory
based on the ball we just threw, we update it with the position
and velocity of the ball that we want to catch next. And this
is what it looks like

We also include a warm start of the arm with the desired
joint velocities at time 0 because, unlike the one-ball case, it

does not have enough time for the actual velocities to converge
on the desired velocities before it has to throw the ball.

Fig. 4. A screenshot of juggling two balls

C. Three ball Juggling

Next, we try juggling 3 balls, but keep running into the
problem of the balls colliding in the air with each other
because now there are two balls in the air at the same time
and slight inaccuracies in the throw. One reason is that the
trajectory of the projectile motion of the ball we plan is
narrow due to the close throw and catch points. Then, the
balls will collide due to their radius being larger than half of
the trajectory at their height. The other reason is that juggling
three balls requires a longer time, thus they are thrown much
higher than before. This leads to a significantly faster throw
and catches velocity which is hard for our iiwa arm to achieve.

Fig. 5. A screenshot of juggling three balls

We successfully juggle three balls by decreasing the radius
of the balls. Though we do not figure out how to juggle with
squash balls, it shows the ability of our robot arm to catch
tiny objects. Unfortunately, we are not able to figure out how
to juggle four balls as the kinematic trajectory optimization
fails every time.

D. Perception

We get the depth camera connected to the manipulation sta-
tion and are able to produce a visual representation of the point
cloud when the ball is falling. We also write an algorithm for
fitting a sphere to the particle point cloud. Though encountered
some difficulties in subtracting the gripper and robot arm, we
access the labeled image port and obtained the masked image
of the ball with the gripper removed. However, by the time of
this report, we have not been able to correlate the pixel data
with the depth data, thus can’t generate the partial point cloud
of the ball for us to fit a sphere.

Fig. 6. Masked images of the free falling ball at time step 1 (left), time step
2 (middle) and time step 3 (right). These images show how the ball enters
the view of the camera and then leaves.

VI. CONCLUSION AND FUTURE WORK

We successfully make the iiwa arm juggles with balls. Our
project allows it to juggle one ball with a variety of heights and
even juggle three balls at a very fast speed. We demonstrate
the ability of the robot to catch and throw very tiny objects.

For future work, we would like to further improve the sys-
tem to have the robot juggling more balls, or even objects with
different shapes, where we need to consider the orientation
of the object for selecting the grasp. We would also like
to give the robot additional flexibility in choosing when to
catch, instead of constraining the time duration between catch
and throw. Furthermore, to integrate the system into the real
robot, we would need to finish our work in perception and
then develop a controller that’s robust enough against camera
noise and real-world disturbances that might change the ball
trajectory.

CONTRIBUTIONS

Shao contributes to the experimental setup, manipulation,
and juggling with one and multiple balls. David contributes to
ball motion calculation, manipulation (trajectory optimization
and inverse dynamics controller), and juggling with one ball.
Richard contributes to the experimental setup, perception, and
juggling with noise and perturbation.

ACKNOWLEDGMENT

We would like to thank Professor Russ Tedrake for his help
and the wonderful lectures he gave during this semester. We
also greatly thank all the TAs in the class, who are always
very helpful and supportive.

REFERENCES

[1] R. Shubert, M. Beveridge, “Robot Juggler”,
https://youtu.be/m5UnMWihWC4, 2020.

[2] W. Mori, J. Ueda, and T. Ogasawara, “1-dof dynamic pitching robot that
independently controls velocity, angular velocity, and direction of a ball:
Contact models and motion planning,” IEEE International Conference
on Robotics and Automation, 2009.

[3] T. Senoo, A. Namiki, and M. Ishikawa, “High-speed throwing motion
based on kinetic chain approach,” IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2008.

[4] A. Zeng, S. Song, J. Lee, and A. Rodriguez, T. Funkhouser, “TossingBot:
Learning to Throw Arbitrary Objects with Residual Physics,” IEEE
Transactions on Robotics, 2020.

[5] W. Dong, G.-Y. Gu, Y. Ding, X. Zhu, and H. Ding, “Ball juggling with
an under-actuated flying robot,” IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2015.

[6] A. Zavala-Rio and B. Brogliato, “On the control of a one degree-of-
freedom juggling robot,” Dynamics and Control, 1999.

[7] D. Serra, F. Ruggiero, V. Lippiello, and B. Siciliano, “A nonlinear least
squares approach for nonprehensile dual-hand robotic ball juggling,”
IFAC-PapersOnLine, 2017.

[8] A. A. Rizzi and D. E. Koditschek, “Further progress in robot juggling:
The spatial two-juggle,” IEEE International Conference on Robotics and
Automation, 1993.

APPENDIX

The appendix shows the desired positions and velocities
(blue) compared to the actual positions and velocities (orange)
of all 7 joints when juggling with three balls. It demonstrates
that our controller can accurately control the robot to achieve
the desired position and velocities.s

Fig. 7. Desired vs Actual: The first column is the comparison between positions, the second column is the comparison between velocities, and the third
column is the difference between actual and desired velocities. Each row corresponds to a joint of the iiwa from joint 0 to joint 6.

